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SUMMARY 

Ray methods are used in coastal and harbour wave disturbance investigations where the area to be 
modelled is large compared to the wavelength. The interpretation of fonvard-plotted ray diagrams, 
once obtained, has always been a difficult problem. The technique described in this paper calculates 
wave amplitudes during the ray plotting process and requires only minor modifications to existing ray 
plotting programs. ‘fie idea is to superimpose a grid of square elements over the entire sea area under 
study, and to perform a spatial averaging of the rays crossing each square element. This ‘square- 
averaging’ technique has a number of advantages. It smooths the rapid amplitude variations near 
caustics, calculates the interference of several wave trains, and generates amplitudes automatically in a 
square array covering the whole studied sea area. Two types of sensitivity tests are carried out. These 
tests are designed to determine the accuracy of the predicted wave amplitudes with respect to: (1) the 
square size per wavelength, and (2) the ray density. These two factors largely determine the computing 
storage, time and cost of a ray model. An upper limit on the square size per wavelength and a lower 
limit on the ray density are obtained. 
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1. INTRODUCTION 

Ray methods have traditionally been used by coastal engineers to determine the effects of 
refraction and shoaling of sea waves as they approach the shoreline. More recently, the 
theory underlying ray methods has been extended to include diffraction of sea waves by 
some simple breakwater arrangements commonly found at harbour entrances. Reflections 
from harbour boundaries can also be modelled by ray methods. These devlopments have 
enabled ray methods to be used for studying the wave disturbance in outer harbour areas.’.’ 

Ray methods are restricted to modelling linear wave phenomena, and do  not incorporate 
‘internal’ diffraction processes (i.e. diffraction other than by surface obstacles). It may seem 
at first sight therefore that alternative solution techniques which can incorporate more of the 
physical processes affecting waves are preferable. Harbour models based on finite- 
difference3v4 or finite-element5-’ techniques are able to incorporate the combined primary 
wave effects of refraction, diffraction and reflections and, depending on the governing 
equations, some non-linear effects as well. However, a minimum number of grid points per 
wavelength (generally about six) are required in order to resolve the waves. For short waves 
in large harbour areas this restriction can result in excessively high data preparation time, 
computing storage and run time. Ray methods, on the other hand, can use far larger element 
sizes per wavelength. For coastal problems, parabolic which can include diff rac- 
tion effects (but not the effects of reflected waves) are appropriate. These methods use a 
‘marching’ solution technique which is considerably quicker than those techniques which 
require simultaneous solution. However, there is again a lower limit to the number of grid 
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points per wavelength, and for very large areas (of the order of hundreds of wavelengths) ray 
methods are still essential. Ray methods, therefore, are indispensable for practical harbour 
and coastal wave disturbance problems where the size of the area to be modelled is large 
compared to the wavelength. 

In this paper ‘forward’ ray methods only are considered, i.e. those which involve plotting 
rays shorewards in the direction of wave propagation. In coastal problems, an alternative 
technique of reverse projection of rays from an inshore point out to deep water is often 
used.“ In this technique, an offshore wave spectrum in period and direction is specified, and 
the inshore spectrum is calculated from the condition that spectral density is conserved along 
each ray. This technique has the advantage of eliminating anomalies such as caustics which 
appear in ‘forward’ ray diagrams. This is because caustics will make only a small contribution 
to the statistical quantities (such as significant wave height and zero-crossing period) 
determined from a wave spectrum. Diffraction and dissipation effects are not modelled in 
this method. 

The computational process of a ‘forward’ ray method involves plotting sets of closely 
spaced rays over the sea area of interest, with each set of rays representing one wave train. 
The sea area is discretized into a grid of rectangular or triangular elements, and depth data is 
taken at the grid intersections. In the refraction program used by the author,” the 
assumption is made that the wave celerity varies linearly within each grid element. This 
approximation is quite adequate for practical applications and allows a quick means of 
plotting rays over the sea area. 

In principle, the determination of the wave field at any point is simple. The wave 
amplitude of one wave train is Calculated from the condition of conservation of energy flux 
between neighbouring rays, and the wave phase is obtained by integration of the wave 
number along a ray. At points where there are two or more intersecting wave trains, the total 
wave field is calculated from the linear superposition of the component waves. In practice, 
however, a typical ray diagram shows a mess of rays with many crossings and caustics, and 
the interpretation of these diagrams presents a difficult problem. It is possible to calculate 
refraction and shoaling coefficients along individual rays without reference to the behaviour 
of neighbouring rays.l0*” This method, however, will break down near important areas of 
‘internal’ diffraction and will not calculate the interference between two or more wave trains. 

As a general rule, it is preferable to use some kind of spatial averaging of rays to attempt 
to take account of the trends of bundles of rays rather than the behaviour of individual rays. 
This consideration applies in particular to the spatial averaging method described in this 
paper. In this method, a grid composed of square elements is superimposed over the sea area 
under study, and the effects of rays passing through each square element are averaged. The 
averaged wave heights and phases thus found are assumed to be the values at the centres of 
the square elements. The results obtained are therefore in the form of a square array of spot 
wave heights and phases covering the whole studied sea area. The computational process will 
be greatly simplified if the grid used in this spatial averaging process is chosen to coincide 
with the grid holding the depth information and in which ray paths are plotted. In what 
follows it will be assumed that the two grids are identical, but it should be remembered that 
they are distinct conceptually. This ‘square-averaging’ technique turns out to have a number 
of favourable features which are listed below. 

1. Near caustics and ray crossings, the square-averaging technique has the effect of 
smoothing the rapid variation of wave height obtained from single-ray methods. 

2. The square-averaging method calculates the resultant of two or more intersecting wave 
trains with the options of either taking into account the relative phases or of treating 
them as random. 
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3. When phasing is taken into account, wave heights will be predicted correctly if squares 
are only partially covered by a set of rays. As shown later, this fact is important when 
modelling waves diffracted by a single breakwater. 

4. Results are automatically generated in a regular array over the whole sea area of 
interest. This is of particular importance in harbour modelling where it is often required 
to find the most sheltered positions for ship berths, etc. 

It is possible to perform a spatial averaging of rays over a line instead of a square. The 
theories of the two methods are very similar, but the line-averaging method has the 
disadvantage of breaking dowp when rays make a very acute angle with the line. Some 
spatial averaging methods using line-averaging have already been put forward.13714 These 
methods, however, only consider the case where the relative phases of intersecting wave 
trains are random. 

The purpose of this paper is to develop the theory of square-averaging and to analyse the 
sensitivity of results to the chosen square size per wavelength and ray density. The 
computing time (and cost) of any ray model is dependent on both these factors. The 
sensitivity analysis aims to determine the trends in wave amplitude error with respect to each 
of these factors. Upper limits on the square size per wavelength and lower limits on the ray 
density are obtained. 

2. THE RAY APPROXIMATION 

The surface water waves are assumed to be time-harmonic and to have small amplitudes, so 
that linear water-wave theory applies. The propagation of these waves over a gently sloping 
sea bed is described by solutions to the reduced equation 

W2Cg 
V. (ccgVq)+-q=0 

C 

with the appropriate boundary  condition^.'^.^^ In this equation c is the wave celerity, c, the 
group velocity, o the angular wave frequency, q the complex wave amplitude and V the 
two-dimensional horizontal gradient operator. At any location, c is given implicitly by the 
dispersion relation 

c = -tanh kh (k" ),,* 
where k is the wave number ( =  wlc), g the acceleration due to gravity and h the water 
depth. The group velocity c, is given by 

c,=- 1+ 2"( sinh2kh (3) 

The complex wave amplitude q can be written as 

q = AeiS (4) 

where A is the wave amplitude and S the waSe phase. Substitution of equation (4) into 
equation (1) leads to the equations 

(VS)2 = k2  (5 )  

(6) V . (cc,A2VS) = 0 
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Equation (6)  is exact, but in deriving equation ( 5 )  the following conditions have been 
assumed to hold: 

A derivation and discussion of conditions (7) and (8) are given in reference 17 (see also 
reference 18). Equations (5) and (6)  are known as the ray (or refraction) equations. Note that 
they apply separately to different wave trains. At locations where conditions (7) or (8) do not 
hold for a particular wave train, diffraction of that wave train occurs and the ray approxima- 
tion is no longer valid. 

By applying the divergence theorem of Gauss to  an area between two neighbouring rays 
equation (6)  can be transformed (after substitution of VS by equation (5)) into 

A2c,b = E (9) 

b is the separation of the rays and E is a constant for a particular pair of rays. Equation (9) is 
the condition of conservation of energy flux between rays, and it determines the wave 
amplitude along each ray. The phase function is calculated by integration of equation ( 5 )  
along a ray: 

S = k ds + So (10) 

s is the path length along a ray from the ray’s starting point, and So is the phase at the 
starting point. At locations where there are two or more intersecting wave trains, the total 
wave field is given by the linear superposition of the component waves: 

All wave 
trains 

3. THEORY OF RAY AVERAGING 

The ray averaging technique is based on the spatial averaging of rays passing through a 
square area or across a line. The term ‘with phasing’ will be used to denote the case where 
the relative phases of separate wave trains crossing an averaging square or  line are taken into 
account. Similarly, the term ‘without phasing’ will be used when separate wave trains are 
treated as having random relative phases. In both the square- and line-averaging methods 
the idea of a ‘region of influence’ of a ray is used. If one imagines two lines drawn on either 
side of a ray midway between it and its neighbouring rays, the region of influence of the ray 
is the area between these two lines (see Figure 1). 

In this section, the theory of the square-averaging method is developed. Square-averaging 
with phasing and without phasing are considered separately. The arguments used in the 
development of the line- and square-averaging methods are identical. Therefore, formulae 
for the line-averaging method will simply be quoted where the corresponding formulae for 
square-averaging have been obtained. 
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Figure 1. Square-averaging (left) and Line-averaging. The shaded area between the dashed lines is the 'region of 
influence' of one ray 

3.1. Square-averaging with phasing 

Consider several wave trains crossing an averaging square. The law of superposition (11) 
combined with the formula for weighted averages gives the following expression for the 
average wave amplitude and phase in the square. 

A eisav = ,,Ale;; + f2A2eiSz+. . .) + (flA,eiS1 + f2A2eiS~+. . . ),+. . . 
fl+f2+. . . av + f2+.  . . 1 

where 
A, is the average wave amplitude in the square. 
S, is the average wave phase in the square. 
Brackets denote separate wave trains. 
Terms in each bracket denote rays in a particular wave train. 
Al ,  A2 etc. are the average wave amplitudes of rays calculated from equation (9). 
S1, S2 etc. are the average wave phases of rays calculated from equation (10). 
fl,f2 etc. are the factors by which the wave amplitudes of each ray are weighted. 
The basic assumption is now made that the wave amplitude of each ray is weighted in 

proportion to the region of influence of the ray in the averaging square. In other words, the fs 
are chosen to be 

f = -  qb 
d 2  

where 
q is the length of the ray in the averaging square 
b is the average separation of the ray from its neighbouring rays in the averaging square 
d is the length of the side of the square 

qb is clearly the region of influence of the ray in the averaging square (Figure 1). Substituting 
equation (13) for the f s  and equation (9) for the A s  in equation (12): 

1 ql(blE1/cgl)feiS1 + q2(b2E2/cg2)kiSz+ . . . A eiSav = - 
av d2 ( qlblld2+q2b2/d2+. . . 

1 ql(blE1/cgl)~eiS1+ q2(b2E2/cg2):eiS'+. . . 1 
' 2  ( q1bl/d2+q2b2/d2+. . . )2 d2  

+-(. . .)3+. . . (14) 
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For sets of rays which cover the whole averaging square the denominators in each set of 
brackets (Cqb/d2) are unity. Thus, each expression for the wave amplitude and phase 
contribution of a ray contains quantities which relate to that ray only, and not to the other 
rays in its wave train. The average wave amplitude and phase in an averaging square can 
therefore be written as 

rays 

Precisely the same arguments are used in deriving the formula for the average wave 
amplitude and phase for sets of rays crossing an averaging line. The only difference is that 
the fs are given by (see Figure 1) 

f =- b A  
d sin 

where 

5 is the angle between the ray and the averaging line. 
d is the length of the averaging line. 

This leads to the following formula for the average wave amplitude and phase: 

rays 

It can be seen that this method will break down when rays make a very acute angle (small 5)  
with the averaging line. 

Each quantity on the right-hand side of equation (15) (and equation (17)) can be readily 
determined in a ray plotting algorithm. An average group velocity, c,, can be found for each 
averaging square from &quation (3). The energy flux constant, E, is specified in the initial 
conditions of each ray. The length of the ray, q, and the phase, S, follow from the 
determination of the ray path. The ray separation, b, can be found by evaluating an ordinary 
differential equation along each 

Average values of b and S between the ray’s entry and exit points in the averaging square 
are used. As discussed in Section 4, this method of determining S does place an upper limit 
on the square size per wavelength. 

It is of considerable importance computationally that the expression for the amplitude and 
phase contributions of a ray should be independent of other rays in its wave train. This fact 
means that only two result arrays (containing the real and imaginary parts of the wave field 
in each averaging square) are needed. If the expression for a ray’s contribution did depend 
on terms involving other rays in its wave train, separate result arrays would be needed for 
each wave train in the problem. This could lead to a high demand on computing storage 
particularly in harbour problems where, in addition to the incident wave, there may be 
several diffracted and reflected wave trains. 

Since A, is inversely proportional to the area of the averaging square (d’) in equation 
(15), it follows that the wave field will be predicted correctly by equation (15) when an 
averaging square is only partially covered by a set of rays. In other words if a set of rays 
covers a fraction F of an averaging square, the predicted amplitude will be F times the value 
obtained if the whole square had been covered. This property is essential in harbour 



TECHNIQUES OF RAY AVERAGING 73 1 

problems where diffraction of waves at the entrance is by a single ‘semi-infinite’ breakwater. 
In these types of problems, a geometric shadow boundary is present, separating the zones 
sheltered from and exposed to the incident wave (Figure 3). Square intersected by this 
boundary will be partially covered by the set of incident rays and by two sets of diffracted 
rays.2 

3.2. Caustics and ray crossings 

An interesting feature of the square- and line-averaging methods is the position of the ray 
separation factor, b, in equations (15) and (17). It appears in the numerator and not, as might 
be expected .from equation (9), in the denominator. Therefore, near caustics and ray 
crossings as b + 0 the unrealistically high wave amplitudes of single-ray methods are not 
obtained. The explanation is easy to see if the amplitude contribution of a ray to an 
averaging square is written as 

As b + 0, the condition of conservation of energy flux (second term on the right) causes the 
amplitude to tend to infinity as b-1’2. However, the region of influence of the ray (first term 
on the right) tends to zero as b. This latter effect is therefore the stronger. 

This smoothing of caustics and ray crossings is similar in its effect to the actual diffraction 
process that always occurs around such areas, despite there being no attempt to model the 
mechanism of the diffraction process. Good, though not of course highly accurate, amplitude 
results can be expected where caustic features are contained within averaging squares. 
Larger scale areas of ‘internal’ diffraction cannot be expected to be modelled correctly, 
though even in these cases qualitative accuracy is often obtained (see, for example, 
References 1 and 13). Errors caused by caustics and ray crossings are often further reduced 
by carrying out a series of runs covering a spectrum of incident wave periods and directions. 

3.3. Square averaging without phasing 

in an averaging square is 
For several intersecting wave trains with random relative phases the law of superposition 

flAl+f2A2+. f * 
A&= ( flAl+ f l+f2+.  f2A2 + . . . . -)l+ ( f l + f 2 + .  . . )l+(. . .I$+. . . 

The same basic assumption as before is made that the wave amplitude contribution of a ray 
in weighted in proportion to the region of influence of the ray in the averaging square. 
Substituting equation (13) for the fs in equation (19): 

Because each bracket is squared, the wave amplitude contribution of each ray is dependent 
on terms involving other rays in its wave train. This is in contrast to equation (14) where 
phasing was included. As discussed in Section 3.1, it is desirable computationally that a ray’s 
contribution should be independent of other rays in its wave train. A formula with this 
computational requirement can be derived if it is assumed that the variation in amplitude 
between rays in each wave train in an averaging square is negligible. In other words, it is 
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assumed that for each wave train in an averaging square: 

A I = A z = A 3 = .  . . (21) 

The condition that rays in each wave train cover the whole of the  averaging squares is also 
needed. 

Using equations (21) and (22), equation (20) can be written as 

In this formula, the contribution of each ray is now independent o f  other rays in its wave 
train. Substituting equation (9) for the As: 

rays 

The corresponding formula for sets of rays crossing an averaging line is derived in an 
identical way : 

rays 

Since A,, is not inversely proportional to the area of the averaging square in equation (24) 
(or to the length of the averaging line in equation (25)) it follows that the wave field will noi 
be predicted correctly when an averaging square is only partially covered by a set of rays. 
Two situations where partial covering of squares could occur are outlined below. In neither 
case, 

1. 

2. 

however, will the incorrect prediction of wave amplitude be important. 
In problems involving diffraction by a single breakwater, the averaging squares inter- 
sected by the shadow boundary are partially covered by three sets of rays (see Figure 
3). However, since these sets of rays are phase-locked, it is essential that square 
averaging with phasing should be used. 
Irregularities or sharp boundaries in an obstacle will produce reflected waves with 
truncated crests in a ray method. The sets of rays at the ends of these crests will only 
partially cover the squares through which they pass. The errors that will be introduced 
by this will, however, be masked by the more important (and unavoidable) error that 
diffraction which is always present at truncated wave crests will not be modelled. . .  

In most practical coastal and harbour problems it is envisaged that square averaging without 
phasing is used for the interference of reflected waves with direct waves. It is usually possible 
to obtain a reasonable estimate of the amplitude reflection coefficient of a boundary, either 
by model tests or the use of semi-empirical formulae. However, the phase change undergone 
on reflection is often unknown except for the simplest types of boundary (such as a straight 
vertical wall). The inclusion of the relative phases of direct and reflected waves gives an 
interference pattern with large spatial variations in the total wave amplitude. Obviously, the 
phase change undergone on reflection would need to be known with considerable accuracy 
for such predicted wave amplitudes to be realistic. Square-averaging without phasing, on the 
other hand, would tend to give a smooth spatial variation of the total wave amplitude. 
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4. SENSITIVITY OF SQUARE AVERAGING TO SIZE OF SQUARES 

In the square-averaging formula with phasing, equation (15), the average of the phases of 
each ray at the entry and exit points in an averaging square is used. Figure 2 shows the 
simple case of one set of parallel rays with no refraction crossing an averaging square. It can 
be seen that the mean phase of each ray is different from the correct value at the centre of 
the square. The larger the square size relative to the wavelength, the greater will be the error 
introduced by,taking the mean phase of each ray. It is therefore important to determine how 
the square size affects the accuracy of the predicted wave amplitudes, and to determine the 
maximum limit of square size per wavelength for use in practical problems. Clearly, this 
consideration does not apply to square-averaging without phasing. 

This square size sensitivity analysis is carried out for three cases: 
1. A single set of parallel rays with no refraction (Figure 2). 
2. Several intersecting sets of rays (parallel and diverging) and no refraction (Figure 3). 
3. As ( l ) ,  but with refraction present (Figure 9). 

It was thought that an improvement could be made to the calculation of the mean phase by 
extrapolating a ray’s path on to the circumcircle of each averaging square (Figure 11). An 
average of the phases at the intersections of the ray with the circumcircle would be used. 
This idea proved to be very successful and to increase considerably the maximum limit on 
the square size per wavelength. The method, and the results obtained from it, are described 
in Section 4.4. 

4.1. One set of parallel rays. No refraction 

It is possible to obtain a formula for the error in wave amplitude for a single set of parallel 
rays at infinite ray density. This formula is in terms of the length per wavelength of the sides 
of the squares (d lh )  and the angle between the rays and the sides of the squares (a). Figure 2 

- - Lows of average phase of each ray 

_ _ _  - Line Of COrmtant phase through Centre of square 

Figure 2. Average phases of a set of parallel rays crossing an averaging square 
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shows one set of rays crossing an averaging square at an arbitrary angle a. Because of 
symmetry, only values of cx between 0" and 45" need be considered. 

For N rays crossing an averaging square, the average wave amplitude and phase in the 
square are 

In this equation: 
1. Each wave amplitude A has been weighted in proportion to the ray's region of 

2. Corresponding rays either side of the centre ray have been paired together 
3. P, and P1P2, etc. are defined in Figure 2. 

influence in the averaging square (factor qb/d2) 

Evaluating the pair of terms in each bracket and taking the limit as N 4 a: 

A eiSw = lim AeikPm - 2b qi cos k(Pi -Pm) 
N - F  d 2  i = l  

av 

Equation (27) shows that the averaging method predicts the phase correctly (this is obvious 
from the symmetry about the centre ray) but the amplitude A is altered from its correct 
value by the factor 

centre ray 

q cos k(P-P, )  db 

This integral can be evaluated in terms of the size per wavelength of the averaging square 
(dlh)  and the ray angle (a). The result is: 

A,, 2 ( (d/h)sin(28sina) 
A .rr(d/h)2 2 sin a(cos2 a -sin2 a) 

- 

) (29) 
2 sin a cos a sin [8(cos a + sin a)] sin [8(cos a - sin a)] 

.rr(cos2 a -sin2 a)2 
+ 

where 
.rr(d/h)(cos a -sin a) 

2 cos a 
e =  

Using equation (29), A,JA has been calculated for values of dlh from 0.25 to 2-5 at 
intervals of 0.25 and for values of a from 0" to 45" at 1" intervals. For each value of 
d/h,  Aav/A shows a single minimum with respect to a, increasing to 1 at a = 0" and 45". 
Table I lists the minimum Aav/A (and the corresponding percentage error) for each value of 
d/h  and the a at which it occurred. It can be seen that as d / h  is increased there is a 
systematic decrease in AaJA from the correct value of 1. This error trend is to be expected 
because, as errors in determining the mean phase of each ray increase, the effect is that rays 
in the same wave train will combine in an increasingly random-phase manner. 

These results indicate that to keep amplitude errors within 5 per cent, the square size per 
wavelength should not be greater than about 0.75. 
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Table I. Theoretical square-averaging amplitudes for 
a single parallel set of rays. Shows the minimum value 
of A,JA (equation (29)) and the corresponding per- 
centage error and ray angle (a) for different square 

sizes per wavelength (d/A) 

Percentage a at minimum 
- d Minimum error of minimum AJA 
A A J A  A,JA (degrees) 

0.25 
0.5 
0.75 
1.0 
1.25 
1.5 
1.75 
2.0 
2,25 
2.5 

0.992 
0,970 
0.934 
0-887 
0.829 
0.765 
0.694 
0.620 
0.544 
0.468 

-0.8 
-3.0 
-6.6 

-11.3 
-17.1 
-23.5 
-30.6 
-38.0 
-45.6 
-53.2 

19 
19 
19 
20 
20 
21 
21 
22 
22 
23 

4.2. Several sets of rays. Nu refraction 

In the first part of this section, the error in the total wave amplitude for 
intersecting plane wave trains in an averaging square is considered theoretically. 
from a ray model run at different square sizes per wavelength are then presented. 

several 
Results 

Consider n sets of rays crossing an averaging-square in which the correct wave amplitude 
of each wave train is Ai and the calculated amplitude has an error SA,. It has already been 
shown that there is n o  error in the phase Si for sets of straight parallel rays. From linear 
superposition, the total amplitude error, SA, can be determined as 

This can be expressed as a fraction of the correct total wave amplitude, A. 

If the waves destructively interfere to give a total wave amplitude close to zero, it becomes 
meaningless to give SA as a fraction of A. For small A, it is more meaningful to express SA 
as a fraction of the total random-phase amplitude A, = A:), provided no two of the 
waves are phase-locked. This fractional error can be written as 

Equation (32) is used for A 3 A, and equation (33)  for A <A,.,,. The condition A S A, can 
be expressed alternatively as 

n n  
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Some qualitative conclusions can be drawn from equation (32) and (33) about the total 
fractional amplitude error in comparison with the worst fractional amplitude error of the 
individual wave trains (SAi/Ai),,,ax. 

1. 

2. 

The 

Equation (32) has the form of a weighted average of (6A,lAi)(6Ai/Ai). 
If the ‘weights’ are all positive, SA/A is clearly no worse than (SAi/Ai)ma. Although 
equation (32) is used when the wave trains tend to  be in phase, it is possible that some 
of the ‘weights’ may be negative and combine in such a way to give a fractional 
amplitude error greater than (6Ai/Ai),,,=. 
Equation (33) is used for the case where the waves tend to be out of phase and the 
inequality 34 holds. Usually, therefore, the second term on the right of equation (33) 
will be negative. If this is so, then fiA/A, is less than (SAi/Ai),,,=. However, there is a 
small probability that the second term on the right of equation (33) could be positive 
and cause 6A/A, to be greater than ( C ~ A J A ~ ) ~ ~ .  

problem of diffraction around a semi-infinite breakwater o n  a constant-depth sea bed 
was chosen for the ray model investigation.2 The semi-infinite breakwater problem is well 
suited for this purpose because it involves the interference of several wave trains and because 
it is possible to obtain at any point the exact total wave amplitude predicted by the ray 
method. The wave trains in this problem are (Figure 3): 

A set of parallel rays in the open zone representing the incident wave. 
A set of diverging rays originating o n  the shadow boundary travelling into the  
sheltered zone. 
A set of diverging rays originating on the shadow boundary travelling into the open 
zone. The sets of rays in (b) and (c) represent the diffracted incident wave and are 
symmetric about the shadow boundary. 
A set of diverging rays from the tip of the breakwater representing the diffracted 
reflected wave. 

Figure 3. Ray diagram for the semi-infinite breakwater problem 
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x Square sue sensitivity tests Results presented far these squares 

Roy density sensitivity tests Results presented for these squares 0 
Figure 4. Ray model grid for tests with a semi-infinite breakwater on a flat sea bed. Incident angle 60" 

A grid of 15 by 9 squares was used with the breakwater lying along one of the long 
boundaries with the tip at the centre of the boundary (Figure 4). Separate runs were 
performed with square sizes per wavelength (d/A) of 0.25 to 2.5 at 0.25 intervals. Different 
dlA were obtained by altering the wavelength. A ray density of about 20 rays per grid side 
ensured that inadequate density of rays did not contribute significantly to the total error. The 
exact total wave amplitudes given by the ray method were calculated at the centre of the 
averaging squares in order that a comparision with the model results could be made. These 
exact ray method amplitudes are all in close agreement with Sommerfeld's analytical 
s01ution.~*'~ 

Results are presented at four averaging squares, each in a different wave regime. Squares 
14 ,2  and 7 , 8  are well into the sheltered and open zones, respectively, and squares 11 ,5  and 
11 ,7  are close to the shadow boundary on either side of it (Figure 4). Figures 5-8 show the 
exact ray method amplitudes and the model amplitudes at each d/A in each of the four 
squares. Tables 11-V show the model fractional amplitude error, 6AIA (expressed as a 
percentage) and the theoretical fractional error (29) for the wave train that crosses at the 
worst angle. Also shown in these Figures and Tables are results using the circumcircle phase 
correction discussed in Section 4.4. 

The following observations are made on the results: 

1. Square 14,2 (Figure 5 and Table ZZ). In this square there are two sets of diverging rays 
(representing the diffracted incident and diffracted reflected wave trains) almost in phase and 
travelling very nearly in the same direction. It would be expected from equation (32) that 
6AIA would be very close to the individual fractional amplitude errors. This is seen to be the 
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case. The fact that the rays are diverging rather than parallel seems to have little effect on 
6AIA. 

2. Square 7 , 8  (Figure 6 and Table 111). The incident wave has a far larger amplitude than 
the diffracted waves and also has the largest fractional amplitude error. It would be expected 
that the total fractional amplitude error would be very similar to the fractional amplitude 
error of the incident wave alone. Table 111 shows this to be so. 

0.2 1 x Roy madelomplitudes with 
circumcircle phose correction 

o Roy model amplitudes. 
No phose correction 

P I I 1 1 J 

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2 0  2.25 2.5 
Square size/wavelength 

Figure 6. Variation of wave amplitude with square size per wavelength (dlh). %mi-infinite breakwater, flat sea bed. 
Square 7,s 
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circumcircle phase correct ion 
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o Roy model omplitudes 

0' 1 I 
0.25 05 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 

Squore sire/wovelength 

Figure 7. Variation of wave amplitude with square size per wavelength ( d / A ) .  Semi-infinite breakwater, Bat sea bed. 
Square 11.5 

3 .  Square 11,5 (Figure 7 and Table IV). This square lies in the sheltered zone close to 
the shadow boundary. In this region there are two sets of rays (diffracted incident and 
diffracted reflected waves) nearly in phase but travelling in significantly different directions 
(between about 4" and 13" depending on the wavelength). The worst fractional amplitude 
error occurs for the diffracted reflected wave for all the wavelengths considered. Because of 

- Roy mthod Exoct omplitudes 
x "y model omplituder with, 

circumcircb phoae c w r e c t m  
o Roy model arnplitudea. 

No phase correctiwl 

O 1 L I  0 ' 1 I 

0.25 0.5 0.75 1.0 1.26 1.6 1.75 2.0 2.25 2.5 
Sgwre rize/wovelength 

Figure 8. Variation of wave amplitude with square sue per wavelength ( d / A ) .  Semi-infinite breakwater. flat sea bed. 
Square 11.7 
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Table 11. Square 14,2. Semi-infinite breakwater, flat sea bed. Percentage error of 
square-averaging amplitude relative to exact ray method amplitude at different 
square sizes per wavelength (d/A). Worst ray angle (a = 14") occurs for both the 

diffracted incident'wave and the diffracted reflected wave 

Percentage error 
theoretical Percentage error Percentage error square 
worst wave square averaging with d 

A train averaging phase correction 
- 

0.25 -0.7 -0.4 0.4 
0.5 -2.8 -2.7 0 
0.75 -6.1 -5.8 0 
1.0 -10.4 -9.7 0 
1.25 -15.3 -15.0 0 
1.5 -20.6 -20.0 0 
1.75 -26.0 -26.5 0 
2.0 -31.4 -31.6 0 
2.25 -36.6 -36.7 0 
2.5 -41.7 -42.4 0 

the similar phases but different 6Ai/Ai of the two waves, equation (32) predicts that the total 
fractional amplitude error, 6A/A, will be somewhat less than the worst 6Ai/Ai. The model 
results in Table IV agree with this prediction. 

4. Square 11,7 (Figure 8 and Table V). There are three wave trains crossing this square: 
the incident wave, the diffracted incident wave (out of phase with the incident wave by close 
to T )  and the diffracted reflected wave (nearly in phase with the incident wave). The incident 
and diffracted incident waves are phase-locked and therefore equation (32) should be used in 
evaluating SA/A. When one wave train is out of phase with the others, it is not immediately 
clear from equation (32) whether 6AIA should be greater or less than the worst SAi/Ai 
(which, in this case, is for the diffracted reflected wave). Table V shows that 6A/A is 
somewhat less. 

Table 111. Square 7,8. Semi-infinite breakwater, flat sea bed. Percentage error 
of square-averaging amplitude relative to exact ray method amplitude at 
different square sizes per wavelength (d/A). Worst ray angle (a = 30") occurs 

for theincident wave 

Percentage error 
theoretical Percentage error Percentage error square 
worst wave square averaging with d 

A train averaging phase correction 
- 

0.25 -0.5 -0.5 0.1 
0.5 -2.1 -2.0 0.1 
0-75 -4.7 -4.8 -0.1 
1.0 -8-2 -7.9 0-1 
1.25 -12.7 -12.9 0 
1.5 -17.9 -17.8 -0.1 
1.75 -23.8 -23.5 0.2 
2.0 -30-3 -30.5 -0.3 
2.25 -37.1 -36.5 0.1 
2.5 -44.4 -44.9 0.1 
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Table IV. Square 11,5. Semi-infinite breakwater, flat sea bed. Percentage error 
of square-averaging amplitude relative to exact ray method amplitude at different 
square sizes per wavelength (d/A). Worst ray angle (a = 34") occurs for the 

diffracted reflected wave 

Percentage error 
theoretical Percentage error Percentage error square 
worst wave square averaging with d 

A train averaging phase correction 
- 

0.25 -0-4 -0-2 0 
0.5 -1.5 - 1.0 0.2 
0.75 -3-3 -2.1 0-4 
1.0 -5.8 -4-0 0.9 
1.25 -8.9 -6.4 1.6 
1.5 - 12.7 -9.1 1.9 
1.75 -17.0 -12.7 2.4 
2.0 -21-8 -17.2 2.9 
2.25 -27.1 -21.6 3.5 
2.5 -32.7 -26.6 4.1 

These results are in agreement with the theoretical conclusion that the total fractional 
amplitude error for several intersecting wave trains will only rarely be greater than the worst 
fractional amplitude error among the individual wave trains. 

4.3. One set of parallel rays. Refraction present 

The semi-infinite breakwater problem cannot be used for testing the grid size sensitivity on 
a varying depth sea bed (i.e. with refraction) since it is not possible to obtain exact ray 
method values at the centres of the averaging squares. Instead, the simpler problem of a 
single plane wave train propagating over a parallel-contoured sea bed is considered. A 15 by 
9 grid of square elements is used with a linear variation of depth as shown in Figure 9. In this 
problem, exact results at the centres of the averaging squares can be obtained from Snell's 
law of refraction and equations (3) and (9). 

Table V. Square 11,7. Semi-infinite breakwater, flat sea bed. Percentage error of 
square-averaging amplitude relative to exact ray method amplitude at different 
square sizes per wavelength (d/A). Worst ray angle (a = 25") occurs for the 

diffracted reflected wave 

Percentage error 
theoretical Percentage error Percentage error square 

- d worst wave square averaging with 
A train averaging phase correction 

0-25 
0-5 
0.75 
1.0 
1.25 
1.5 
1.75 
2.0 
2.25 
2.5 

~~ 

-0.7 
-2.7 
-6.0 

-10.4 
-15.9 
-22.3 
-29.2 
-36.7 
-44.5 
-52.3 

~ 

0-2 
-1.5 
-4.0 
-7.5 

-11.5 
-16.4 
-22.2 
-28.5 
-35.1 
-42.5 

0.5 
0.2 

-0.4 
-0.4 
-0.8 
- 1.0 
-1.2 
-1.4 
-1.6 
-1.8 
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Figure 9. Ray model grid and bathymetry for tests with a parallel-contoured sea bed. Incident angle 45" 

The same values of grid size per wavelength (d/A) as those in the previous section were 
tested (d/A =0.25 to 2.5 at 0.25 intervals) but with an incident wave angle of 45". Since it 
was necessary that rays should undergo the same amount of refraction in each run with 
different d/A, the variation of wavelength over the whole grid had to be the same for each of 
these runs. This meant that d/A could only be changed by altering the square size. The 
incident wave period was chosen so that the wavelength which gave the desired value of d/A 

X 0 0  * X X x X X x 
0 0  

O O  
0 

0 
0 

- Ray method. Exact amplitudes 
Roy model om litudes with 
circumcircle p L s e  correction 

No phase wrection 

x 

o Ray model amplitude. 

625 06 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 
Square size/wavelength 

Figure 10. Variation of wave amplitude with square size per wavelength (dih).  Single plane wave train, parallel 
contoured sea bed. Average of amplitudes in squares in fifth row 
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Table VI. Average of squares on fifth row. Single wave train, parallel contoured 
sea bed. Percentage error of square-averaging amplitude relative to exact ray 
method amplitude at different square sizes per wavelength (d/A). Ray angle for 
flat bed theoretical errors is the ray angle at the 10 m depth contour in the model 

(a = 36") 

Percentage error 
theoretical Percentage error Percentage error square 

- d worst wave square averaging with 
A train averaging phase correction 
- 
0.25 -0.3 -1.0 -0.7 
0.5 -1.1 -1.9 -0.7 
0.75 -2.5 -3.5 -0.7 
1.0 -4.4 -5.2 -0.7 
1.25 -6.8 -7.8 -0.8 
1.5 -9.7 -10.8 -0.8 
1.75 -13.1 -14.1 -0.8 
2.0 - 16.9 -18.2 -0.9 
2.25 -21.1 -22.4 -0.9 
2.5 -25.6 -27.0 -0.9 

occurred at a depth of 10 m (which is at the centre of the fifth row of squares). A ray density 
of 20 rays per square side was used. 

Figure 10 shows the model wave amplitudes (averaged over all squares in the fifth row) for 
each &A. The percentage error relative to  the amplitude determined from Snell's law is shown 
in Table VI. Also shown in this Table is the theoretical percentage error determined from 
equation (29) assuming a flat sea bed and a ray angle equal to that at the 10 m depth contour 
in the model. Table VI shows that the model errors are only slightly greater than the 
theoretical errors. These small additional errors, resulting from the presence of curved rays, 
can be accounted for in two ways. 

1 .  The locus of the mid-points of a set of curved rays crossing a square will be different 

2. The average of the phases of a curved ray at the entry and exit points in a square will 
from the locus of the mid-points of a set of straight rays. 

be different from the phase at the mid-point. 

4.4. Circumcircle phase correction 

It has been shown that, by taking the mean phase between the entry and exit points of rays 
crossing an averaging square, the maximum allowable square size is about 0.75 wavelength. 
This limit gives errors in wave amplitude of around 5 per cent for the worst ray angles. 
Although this limit is considerably larger than those in finite element or finite difference 
models (maximum element size about 0.17 wavelength) it will still lead to high data 
preparation time, computing storage and run time for short waves in large sea areas. The 
sensitivity analysis has shown that by far the largest contribution to  this error has arisen from 
the simple geometrical consideration that the entry and exit points in a square were used to 
determine the mean phase of each ray. The influences of intersecting sets of rays and 
refraction have been shown to be much smaller. 

The idea of the circumcircle phase correction is to  extrapolate a ray's path onto the 
circumcircle of the averaging square. The intersections of the ray with the circumcircle are 
then used to determine the mean phase. It is assumed that the extrapolated ray paths 
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Figure 11. Average phases of a set of parallel rays crossing an averaging square with the circumcircle phase 
correction 

between the entry/exit points on the square and the entry/exit points on the circumcircle are 
straight. The determination of the intersections of the ray with the circumcircle then reduces 
to the simple problem of finding the intersections of two known straight lines with a known 
circle. This process does, of course, add to the run time in plotting each ray. 

The circumcircle method removes completely the error arising from taking the mean phase 
between the entry and exit points on a square. Consider a single set of straight, parallel rays 
crossing an averaging square with their paths extrapolated to the circumcircle (Figure 11). It 
is obvious that the mean phase of each ray determined by the circumcircle method is exactly 
the value at the centre of the averaging square, whatever the ray angle and square size. An 
analysis for infinite ray density, corresponding to that in Section 4.1, therefore shows zero 
error in amplitude for all ray angles and square sizes. 

It remains to see how this idea works in practice. The tests in Section 4.2 (semi-infinite 
breakwater on a horizontal sea bed) and Section 4.3 (single wave train on parallel contoured 
sea bed) were repeated using the circumcircle method. Figures 5-8 and 10 and Tables 11-VI 
show the results. A big improvement is obtained over the corresponding results without 
the circumcircle phase correction. At the largest square size per wavelength (d/A = 2.5), 
the worst amplitude error amongst the squares considered is about 4 per cent with the 
circumcircle method. The other squares show much smaller errors. Without the circumcircle 
phase correction, the averaging method breaks down completely giving errors of over 40 per 
cent in the worst cases. Depending on the required accuracy in any problem, even larger 
square sizes than 2.5 wavelengths could be used. It was found that the extra computation 
required by the circumcircle method lead to an increase in run time of 17 per cent but this, 
of course, will be greatly offset in practical problems by the savings in using larger square 
sizes. 

5. SENSITIVITY OF SQUARE AVERAGING TO RAY DENSITY 

The accuracy of the square averaging method clearly depends on the number of rays in each 
wave train crossing a square. This applies to both square averaging with phasing and square 
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I I 
I I I I I  

Figure 12. An example of a set of rays crossing an averaging square giving a large ray density error 

averaging without phasing. A particularly large amplitude error resulting from insufficient 
ray density occurs in the simple example shown in Figure 12. A single set of straight parallel 
rays crosses an averaging square parallel to two sides of the square. The maximum error 
occurs when two rays just graze the two sides of the square, as shown in Figure 12. The 
amplitude error for this case can be calculated from equation (15) (with phasing) and 
equation (24) (without phasing) for a general ray density of n rays per square side. These 
amplitude errors, expressed as a fraction, are: 

1 
n 
- with phasing 

1 + y 2  without phasing 

This shows that larger errors are given by the method of averaging with phasing. 
This example, of course, is an extreme case and smaller errors can be expected in practice. 

The semi-infinite breakwater problem again provides a good test of the sensitivity to ray 
density when there are several intersecting wave trains. The same model set-up as before 
(Section 4.2) was used, with an incident wave angle of 60" (Figure 4) and square size per 
wavelength of 0.25. Separate runs were performed for ray densities (expressed as the 
number of rays, n, per grid side) of 1 to 6 at intervals of 1, and 6 to 12 at intervals of 2. The 
angular separation of the diverging diffracted rays was chosen so that their density was 
roughly equal to the density of the parallel incident rays at a distance of one and a half 
wavelengths from the breakwater tip. Results in averaging squares at about this distance 
from t h e  breakwater tip were used for comparison with the exact ray method values. 

Table VII shows the percentage amplitude errors in ten of these averaging squares (Figure 
4) for each of the ray densities. Two general trends can be seen from this Table: 

1. For a particular ray density, there is considerable variation in amplitude error from 

2. For a particular averaging square, the amplitude error tends to increase unsystemati- 

These trends are to be expected. As the ray density is decreased, it becomes a question of 
chance as to whether rays cross a square in such a way as to produce a small or large 
amplitude error. It would appear that a ray density as low as four or five rays per square side 
does not generally give errors greater than 5 per cent. 

square to square. This becomes more marked at thc lower ray densities. 

cally as the ray density is decreased. 
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Table VII. Semi-infinite breakwater, flat sea bed. Percentage error of square-averaging amplitude 
relative to exact ray method amplitude at different ray densities 

Percentage amplitude error 

Ray Ray Ray Ray Ray Ray Ray Ray Ray 

co-ordinates = 12 = 10 = 8  = 6  = 5  = 4  = 3  = 2  =1 
Square density density density density density density density density density 

14,2 0 0 -0.4 -1.1 -1.1 -1.9 -6.9 -1.9 12.6 
13,4 0.3 0 0 -1.2 -0.6 -0.6 3.0 -2.1 30.0 
12,5 0.2 0.2 -0.5 -1.4 -1.1 -1.6 4.1 -1.1 65.9 
11,5 0.2 0 -0.9 -1.3 -3.7 -6.1 -10.7 -17.0 -69.1 
10,6 -0.4 -0.7 -1.3 -1.6 -2.4 1.1 3.6 -18.8 -42.2 
9,6 -0.7 -1.3 0 -0.2 2.6 -3.8 -4.9 9.6 -27.6 
8,6 -0.5 -0.5 -0.5 -0.6 -0.1 -0.7 -0.5 -0.4 -1.2 
6.6 -0.6 -0.5 -0.6 -0.3 0.8 -0.4 -5.4 0.8 9.6 
4 , s  -0.7 -0.7 -0.7 -0.7 0.7 -0.7 1-9 -0.9 8.7 
3,3 -0.5 -0.5 -0.5 -0.6 -1.8 -0.5 -0.7 -0.4 15.0 

6. SUMMARY AND CONCLUSIONS 

Computational ray methods are used in coastal and harbour wave disturbance modelling 
where the area to  be modelled is large compared to the wavelength. A technique of spatial 
averaging of rays has been described. This technique involves averaging the effects of rays 
crossing each square element of a grid covering the sea area under study. By choosing this 
square grid to be identical with the grid containing depth data, the square averaging 
technique can be easily incorporated into existing ray plotting routines. The square averaging 
technique has a number of positive features which make it preferable to the usual method of 
evaluating refraction and shoaling coefficients along each ray. 

1. 
2. 

3. 

4. 

Caustics and ray crossings are automatically smoothed. 
The interference between several wave trains is calculated with the options of either 
taking into account the relative phases of the wave trains or of treating them as 
random. 
Wave amplitudes in squares partially covered by sets of rays are correctly predicted 
when the relative phases of wave trains are taken into account. 
Wave amplitudes are obtained in a regular array over the whole sea area under study. 

A technique of averaging rays crossing a segment of a line is very similar, but has the 
disadvantage of breaking down when rays make a very acute angle with the line. 

Sensitivity tests have been carried out to determine the accuracy of the predicted wave 
amplitude with respect to: 

1. the square size per wavelength (for the case when the relative phases of wave trains are 

2. the ray density. 
taken into account), and 

A square size of 0.75 wavelength was found to give errors of around 5 per cent. Much more 
accurate wave amplitudes were obtained by incorporating a phase correction method. With 
this method a square size of 2-5 wavelengths gave an error of 4 per cent in the worst case. At 
most other squares the error was considerably less than this. A ray density of about five rays 
per square side was shown to give errors generally no worse than 5 per cent. 
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